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Nonlinear interactions of waves in a heavy liquid of finite depth at whose surface 
floats a thin viscoelastic plate modeling ice cover [i] are studied in this work. The source 
of disturbances in the liquid is a variable external pressure field moving over the ice cover 
surface. It is well known (see e.g. [2, 3]) that depending in the movement velocity the 
source of wave excitation with a specific wave number k 0 has a resonant character. In view 
of this it is of interest to study the resonant excitation of waves in a liquid by an exter- 
nal pressure field which has the form of weakly-modulating wave packets whose spectrum dif- 
fers from zero in the vicinity of wave numbers k = mk 0 (m e Z) and to study the effect of 
nonlinearity of the problem on limitation of wave amplitude with resonance. 

Resonant interaction of the harmonics of capillary waves at the surface of an ideal 
liquid was considered in [4-9]. In [I0, ii] a study was made of the process of resonant ex- 
citation of waves in a heavy liquid with a free surface by a periodic external pressure field. 

I. Potential movements of a heavy incompressible liquid with velocity potential ~ in 
dimensionless form are described by the Laplace equation A~ + 0~z ~ ~ 0 (A = $xx @ a~) with the 
boundary condition of no flow at the bottom 0z~ = 0, z = --Hand dynamic and kinematic condi- 
tions at the unknown surface z = g~ [12]: 

Or,1 + eVq :~V,1 -  cp~(1 + s~ (V~I) 2) = O. 

a ~  + (J/2) ~ [(vq:~) ~ - ( ~ ) ~  (j + ~ (v,~)~)] + = o, 
V .... (0.,., a~), e = a ). << 1. 

( 1 . 1 )  

Here ~, ~ are values of ~ and 8 z ~ at surface z = sq; p, 9 are liquid pressure and density; 
a, 2~ are characteristic amplitude and wavelength. As characteristic values of potential 
~, time t, horizontal coordinates x, y, and vertical coordinate z we take, respectively 

On the liquid surface floats a thin viscoelastic plate modeling ice cover [1]. Pressure 
in the liquid at the surface under the ice p is connected with external pressure P0 by the 
relationship [i] 

(o~, ~) = (x, y), D = Eh~/(12 (1 - -  <-)p~.  ) , ~  
t t 2 - -7"  

( 1 . 2 )  

where E, v are Young's modulus and Poisson's ratio of the plate; ~a~' are plate viscosity 
coefficients; oa~' are tensor components for stresses created in the ice cover by external 
loads (e.g., by the action of wind); h is plate thickness. 

In order to study processes of resonant wave excitation by an external pressure field 
which has the form of weakly-modulating wave packets we present P0 in the form 

Po/9= ~ Pro(X, Y,t) expiOm, O m = m k o x ,  
m = - - o o  

(an asterisk means complex conjugation). 

P m =  Z--m, (X, Y) =(~x, ey) 

Vladivostok. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, 
No. 3, pp. 101-109, May-June, 1991. Original article submitted August 8, 1989; revision 
submitted January 25, 1990. 

0021-8944/91/3203-0395512.50 �9 1991 Plenum Publishing Corporation 395 



By expressing the solution of the Laplace equation which satisfies the boundary condi- 
tion at the bottom in terms of a Fourier integral and assuming that in it z = O, we find 
that 

(q~0, (0) = ~ A (k, t ) ( i ,  s) exp iOdk. ( 1 . 3 )  
- -co  

H e r e  s = k th  kH; k = (k~, k~,); k = [kl;  O = (kx); f ie T~ a r e  v a l u e s  o f  ~ and  6 z T  w i t h  z = O. 

We shall find the solution of (i.i) in the form of weakly-modulating wave packets whose 
Fourier-forms differ from zero in the g-vicinity of points k m = (mk0, 0). Whence it follows 
that ~0 ~ may be presented as 

(~, ~o, ~o)= ~ (~, ~o, ~o )o.~p ~o,., 
W l ~ - - o o  

0 * O* (n,., ~, ~.,.,)= (~-,~, ~ ,  ~,-m). 

Functions ~m, ~0m, %,m0 depend on X, Y, t. From (1.3) we have 

o Fm~>~ 1~,~ iesm,~ ( t / 2 )  e ~ (s,~,nOx.~ 4" Sm,2.,.a,u,a) q- 0 (e'~), q ) z , m  ~ ~ 8 m  ~ - -  (1.4) 

Sm, Sm,~, Sm, z~ , Sm,~= are values of s, 8s/3kx, 82s/3kx 2, 32s/3kyZ with k=km. 

In Eq. (i.i) there are functions (~ and ~ which with use of expansion of ~ and 3 z 
into a series for powers of g in the vicinity of z = 0 may be expressed in terms of q~0, ~ , 
after which from (1.3) and (1.4) we obtain 

m ~ - - m o  

+ ie(draPltOxCr'm-I + gmz%~-tOx~]O) + e ~ ~ /r.Z,,~lzq,,%.-Z-,~ + O(e3)" 

( ] . . s )  

Coefficients rms , dms gms fms depend on the values of k0, s m, Sm, I. 

By substituting (1.5) in (i.I) and equating the coefficients with identical harmonics 
we have with an accuracy to O(g 2) an infinite set of equations 

z=-~ t,~=-oo (1.6) 

l=--oo l$~--oo 

Operators ~m n are determined from the relationships 

oo 

(~ + I) ~ = E ~ (S~) ~xp ~Om. 

For example, 

~2 2 

ct ,~ 

Coefficients fms i, rmEi , dms gms i are also expressed in terms of the set k0, Sm, Sm, I. 

If in the initial instant of time the liquid was at rest, then solution of (]..6) should 
satisfy the initial conditions 

~m = ~m = O, t = O. (1.7) 
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2. We consider the problem of wave generation by a periodic external pressure field 
moving along the x axis velocity c = m/k 0. In this case Pm = Pm' exp(im~t), P'm = const. We 
make a change in (1.6) 

r t 

~1,,, = qm (t) exp (irno)t), q~m = gm (t) exp (imcot) 

and we introduce new variables 

u.~=~--v~ _~m,q,~+ i "Z-~ r  L = = . ~ , ( k ) e i , Z ~ t  m2 

With p~ = 0 system (1.6) with an accuracy up to O(g) is written in Hamiltonian form 

I t  ---- 

O~u,~ = -- zOH /au, , ,  

I * * * r * * 

t 

Am = O)m -- me0, g m =  ]/(Om/(2Lm) Pro. 

( 2 . 1 )  

Coefficients ~m~, ~ms are determined in terms of the set k0, s m, Sm, z, and w m. 

It is noted that cubic nonlinear terms in Eqs. (1.6) which have an order of O(e 2) can- 
not be presented in the form of partial derivatives with respect Um* and u m of H~niltonian 
H. Therefore, writing of Eqs. (1.6) in canonical form (2.1) is correct with an accuracy up to 
terms of the order of O(e). Canonical variables u m with h = 0 agree with canonical vari- 
ables of the movement equations for liquid with a free surface found in [13]. 

Internal resonances are possible in this problem and conditions for the onset: of them 
are determined by the relationships 

Am ~ An = O, m = / : n .  ( 2 . 2 )  

With internal resonance excitation of the m-th harmonic occurs as a result of nonlinear 
interaction of the n-th and (m - n)-th harmonics. In liquid with a free boundary condition 
(2.2) is not fulfilled. Assuming that n = 1 and resolving (2.2) with respect to k, we find 
that 

k . ,  = 
,,,%~,: + 1/,,~%~.,: + *,,D (,,r + ~ +,) 

,~ ,. ,,,D (m" + ,,, = t) 

In a zero order with respect to E solution (2.1) satisfying (1.7) 

U m =  igm (e -~Amt - -  l ) /Am.  

In resonance case &m = O(g) solution (2.3) makes sense with t ~ i. 
times nonlinear effects limiting the increase in the amplitude of the m-th harmonic due to 
its self-influence and transfer of energy to other harmonics become marked. 

With ~ = O(s), A m = O(E) solution (2.1) is found in the form 

is written in the form 

( 2 . 3 )  

With long evolution 

uh = u~(t)  (k < O), T = ~t,  

where Uk"(t) in a zero order with respect to E is determined by Eqs. (2.3) and there are 
rapidly oscillating parts of the excitation, but Uk'(T) is found from the equations (in fu- 
ture the primes are omitted) 

Otu~=  . - -  * = , ( 2 . 4 )  - -  zOIt/Ou~, ~ H,.  1 + H~,2, 
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( k--1 ) m+l h--I 
Hr~,~ Ahuhu-~ q- e Y~ * + E E * * * kttthU.,l tl k_ l  --~ 

h=l I=i k=l /=1 

+ e (a'~u7 + VmU,~ + WU. e +VmUm), 1I,.,~ ~ h lUk u I Uh-- l 
h=m+2 l=l 

"~ = g~/e. 

System (2.4) has an integral H = const. Phase curves lying in different surfaces of 
level n cannot intersect and pass from one surface to another. Stationary solutions (2.4) 
correspond to extreme points of the Hamiltonian 

o ~ / o u ~  = o, k ~ z ( 2 . 5 )  

A state of rest with ~1,m # 0 is not a position of equilibrium system (2.4) and it re- 
lates to hypersurface ~ = 0. Emergence into a stationary system from the initial state of 
rest is only possible in the case when the Hamiltonian has extremes at hypersurface H = 0. 

Stationary solutions of (2.4) are found in the form of a series 

uk = lim Sl,h,  S~,k = u~ + 61u k + . . .  + 6lug. ( 2 . 6 )  

Here Uk ~ is the accurate solution of the equations 8Hm, z/SUk* = O; 6s k is solution of sys- 
tem (2.5) linearized with respect to 6s k where the value of Hm, ~ is taken at point u k = 
Ss k + 6s and Hm, ~ is taken at the point u k = Ss k. A criterion for applicability 
of this method is convergence of series (2.6). 

For an example we consider the case A~ = EA, A = 0(I), A k = 0(i). It follows from (2.5) 

that u~ ~ is a root of the equation Au~ + $2z2lu~l=u~/A= + yz = O. With A = 0 we find that 

Iu~l = 71/3, 7 = IA271/~2z={ �9 With 7 << 1 stationary solution (2.4) is obtained in the form 
of a series with respect to powers of ~1/~. Calculations show that ~ # 0 for this solution. 
Therefore, emergence into the stationary regime constructed from the original state of rest 
is impossible. 

With A~, m = O(e) the solution of (2.4) has the following structure: 

l uk I = O (e~'h), ,% -- min (!; - -  m [k/m], 
m ( [ k / m ] +  I)--A') ( k > m ) ,  v h = m i n ( k - - l ,  m--L')  ( l < l ; < m ,  m > 0 ) .  

( 2 . 7 )  

In particular, in the absence of internal resonances lUkl = O(e k-l) is fulfilled. With reso- 

nance in the 2nd harmonic (m = 2) we have lUk[ = o(ek-2), k -> 2. 

It follows from (2.7) that from (2.4) it is possible with an accuracy up to O(e 2) to 
exclude all terms apart from u I and u m interacting resonantly. With m > 2 in equations for 
interaction of ul and u m there will be cubic nonlinear terms which have the order of O(E2). 
It is noted that in deriving Eq. (2.1) from (2.4) cubic terms were not considered. 

3. Equations for interaction of the ist and m-th harmonics are derived from (1.6) 
using property (2.7). With m > 2 with an accuracy up to O(e 2) we obtain 

( ~ , ~  + ~fi~,j+ 7~j)~j = ~ ((~j~ I ~ I ~ + •176 l ~m ? + ~jO~o+~OX~o)~j  + 

+63,~v~Fj )+pj  (] = t , m ) ,  F 1=r %, F~ r 

(OfT --  HA)% = Doalq~,_l + o,,~lq~ml, 

Dl,i = (1 + irtj)Or -+- u  

Dz,j = W j , x x ~ x x  + 2~"LxYOxY  -1- W j , y y O y y  - -  " ~ O T T  - -  i UjOXT,  ( 3 . 1 )  

D o j  = (y~k~ - -  s~) OT - -  2ko fo-~sgx ,  V~ = -f~ v~(Ls)Ik=kj, 

t 0"- (Ls) k=kj' U j  = -- ~xxko (Sra "~ /'//~k0$m,l)/(Os 
W j , ~  - -  4]03 Ok a Okf~ 

~ j  = (eOTp~ - -  i](op)) (2]eo~). 
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Equations for interaction of the Ist and 2nd harmonics with an accuracy up to 0(~) have 

the form 

(OTT H A ) %  ~ '" ~ - -  = Do,~{%l- § Oo,=lq%] , 

In view of their cumbersome nature expressions for the coefficients <ij, aj, ~j, \,j, Tj are 
not provided. 

If plate thickness h tends towards zero, then fulfillment of the condition for genera- 
tion of high harmonics is impossible. Equations (3.1) are converted into a set of Davey- 
Stewartson equations [8, 9]. With ~a~ = ~ = 0, H +~, Eqs. (3.1) degenerate intoanonlin- 
ear Schroedinger equation 

~(o~ + ~o'ox) ~ + (~/2) (~o"o~ + ~o'~o%~)~ + A,%=~• 1% I ~ % + ~ .  

= #~ (2  - ~ o # ~ ) / ( o ~  (~ - ~ o ~ - ~ ) ) .  
(3.2) 

With p~ = ~ = 0, <~" < 0 periodic solution (3.2) is unstable, which leads to decay of 
the wave envelope into individual solitons. Soliton solutions (3.2) in the unidimensional 
case are written as 

q~l = * ( ~ )  e x p  [i(rX + sT) I, ~ = X - -  vT ,  

= A c h - ~ ( B ~ ) ,  v = co' + e r ( o " ,  

A = ] / - - 2 B : ( ~ •  B = V '2 -RT(em") ,  R = s + ro)' + ~r~(o"/2. 

In the case of conformity of the soliton envelope velocity with phase velocity w/k0 for 
the wave running beneath it, wave packet ~ = '~i exp[i(01-- et)] is a soliton with an oscillat- 
ing structure. In a zero order with respect to ~ this condition is fulfilled with ~' = e/k 0. 
By solving this relationship with respect to k 0 we find that k 0 = (3D) -I/4 

4. We study the effect of low plate viscosity on development of vibrations in an in- 
finitely deep liquid excited by periodic external pressure at its surface. We consider the 
case of absence of internal resonances, i.e., 

A is 

which with ~ = 0 has the integral 

H = --A(~ ~ + ~ )  + ~ •  + ~2)2/2 + 2 p ~ ,  ~ = �9 + i~. 

We introduce the notation E = ~2 + ~2. From (4.1) with ~ = 0 we find that 

A~ = z ( ~  + i ~ ) =  0(~) ,  5~ = 0 (1), k 4 = l  (~t = k%~ ~/(2a), 

frequency detuning). From (3.2) we find that this process is described by the equation 

(4.1) 

OTE = ],/ P--~), P4(E) = --H" q- 2E(2p ~ - -  AH) + 

q- E2(e• -- A 2) q- ~A• 3 -- e2• 

The solution of the equation E = E(T) obtained is expressed in terms of elliptical func- 
tions. Constant H is selected from the initial conditions with t = O. We note that P~(E) 
0 with t = O. With large E there is fulfillment of P4(E) < O. Therefore for the equation 
P4(E) = 0 there is always a positive root. Movement with any initial conditions occurs in a 
limited region in phase plane (9, 4). For Eq. (4.1) with ~ << 1 there are singular points 
in plane (~, 4) which are found from 

e• 3 -- A@ q-p : O(~), ~ : ~/(e• 2 -- A). (4.2) 
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With D = 4A3/(27r -- p2 > 0 the first equation of (4.2) has three real roots which are 
written in the form 

( 1 ) i = ~ / - ~ s i n ( x + 2 ( i - - i ) a / 3 ) , ,  % = a r c s i n (  3 ] / 5 p ] / ~  A y ~  y ~ = 1 - 3 .  

If T l /T  With D = 0 there are two real roots one of which is twofold ~P2 = (P~ = 3~' (~1 = -  2 ~ , 

and with D < 0 there is only one real root. For example, with exact resonance ~i ~ = -(p/ 
(sK)) I/3, 5 = O, Each singular point relates to stationary solution (4.1). Point r ~ with 
h = 0 corresponds to the stationary resonant solution obtained in Sec. 2 in the form of a 

series with powers of 71/3. 

We determine the stability of the stationary solutions. By linearizing Eq. (4.],) in 
the vicinity of singular points, with an accuracy up to 0(~) we find that 

i 
xt  = X x, x = ( x .  x.,), ~ = (lh + x~, ~ = ~ i  + x~, 

xSj = r, \ I ,  x}~ = ( -  ~?(~. (2  + ( -  t)0 m ~ -  A) 

(],k J,~ 

The e i g e n v a l u e s  o f  m a t r i c e s  X i a r e  

~? = - ~ + 4 / ( ~ . @  - ~)  ( 3 ~ . . ~  - A) + o(,~). (4.3) 

It follows from (4.3) that with D < 0 a singular point is a stable focus and the solu- 
tion relating to it is asymptotically stable. With D = 0 this singular point is the stable 
focus, and another is the stable node. Both stationary solutions in this case are asymptoti- 
cally stable. With 0 < D < Di, where Di is determined from the condition ~2 + = O, yet another 
singular point appears, i.e., a stable node. The solution corresponding to it is asymptoti- 
cally stable. With D > DI there are three singular points: a stable focus, a stable node, 
and a saddle point. Solutions relating to the focus and the node are asymptotically stable, 
but the solution corresponding to the saddle point is unstable. It is noted that with p = 
0 singular points Ol,s are centers and according to Lyapunov the solutions relating to them 
are stable. 

A wave number k = (2/(13D)) z/4 exists with which ~ = 0 and solution (4.1), which satis- 

p 
-- e(ZA ~)t fies the zero initial conditions, takes the form 9 A+ Gt ( - --l). With t + ~ this solu- 

tion emerges into a stationary regime 9s = --p/(A~-. f~) and with small &, D it has the max- 
imum amplitude. 

5. In an infinitely deep liquid beneath an elastic plate interactions of the Ist and 
2nd harmonics in the unidimensional case with pa$ = o~ = Pz,2 = Az,2 = 0 are described by 

the equations 

' 2 * 
argi + ~oiax% = k2~0iq%, 

t '2- 2 OrqD2 + oJ20x% = (1/2)l;2qo 1, k 2 = (14D) -i/~. 

Equations (5.1) have an integral 

(5.1) 

oo 

(t(piI2+ 2l(p212)dX=const, ~1,~0, IXl~oo, 

from which it follows that if in the initial instant of time all of the wave energy is con- 
centrated in the ist harmonic then with the passage of time the energy of harmonics becomes 
comparable in value. The process of energy transfer between harmonics of a periodic nature 
is described by elliptical functions [14]. 
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Equations for interaction of the ist and 2nd harmonics in the unidimensional case with 

~a~ = oa~ = Pl,m = Al,m = 0 look as follows [15]: 

~"~ = ( ~ j l  ! ~1 12 2F ~J~ [ ~m 12 ) ~j ~1_ 6mavjFj, 

177 27 
j = 1~ m~ v 1 = - - 3 ~ '  % - -  65D" 

( 5 . 2 )  

Equations (5.2) with m = 3 have an integral 

.I (I % I ~ + (vl ' , '~)  1 %  I ~) dX = oon~t, ~1,~ - *  o, IX  1-~ ~ -  ( 5 . 3 )  

With m > 3 from (5.2) it follows that 

Y 
j I c p ~ l ~ d X = c o n s t ,  q o j ~ O ,  I X l ~ o o .  

It follows from (5.3) that interaction of the ist and 3rd harmonics exhibits a property 
similar to interaction of the ist and 2nd harmonics, if in the initial instant of time all 
of the wave energy is concentrated in the ist harmonic, then with the passage of time the 
energies of the Ist and 3rd harmonics become comparable in value. The difference is in the 
characteristic times of the processes. With interaction of the ist and 2nd harmonics the 
characteristic time of transfer of energy is of the order of O(s-1), and with interaction of 
the ist and 3rd harmonics it is of the order of O(s-2). In the case of interaction of peri- 
odic waves [the dependence of X in (5.2) is absent] solution (5.2) is expressed in terms of 
elliptical functions by the equations 

~j = i f -  ~.:~j e..:p (i/j) (7 = t ,  3), z~ + z~ = c: = const ,  

p~(z~) + v~V~- :v~z]z3cosv  = O, ? = / 3 - 3 / .  

1'~ (z~) = ( 2 •  - 2 •  + • - • z~/3 + ( •  3 - 2• + ~,  

= c o n s t ,  

~ = V ~ 0 ( ~ ) , / j  = (• + ~ j ~ , ~ )  + 
. ~.2--j  ,3 . ~4~2 2 (Z 1 + v~ ] /vF, '3  cos ~ ~~3 , P,~ (z~) + P3 ). X,I\ 3~lZ, 3 

If Ps(zl) has a twofold root z i = 0 and 82P6/Szl 2 > 0 with z i = 0, while P6(z) > 0 with 0 < 
z < Zl(0) , then z i + 0 with t + ~. In other words, with the passage of time there is total 
transfer of energy to the 3rd harmonic. 

With resonance in the m-th (m > 3) harmonic the transfer of energy does not occur in 
this approximation. If in the initial instant of time the m-th harmonic is small compared 
with the first, then it ceases with evolution times of t = O(~-2). 

With resonance in the m-th (m ~ 2) harmonic nonlinear terms of Eq. (i.i) with substi- 
tutions (1.5) responsible for exchange of energies between harmonics (amplitude interaction) 
have the order o(gm). Terms responsible for nonlinear phase interaction and self-influence 
of harmonics have the order O(s3). Phase interaction and self-influence leads to a nonlinear 
shift in the frequency of interacting waves A(0j = U(• ~ ~ • 2) and retention of their 
energy. With m = 3 terms of the same order of smallness relate to processes of amplitude 
and phase interaction in Eqs. (5.2). With m > 3 phase interaction and self-influence pre- 
dominate. 

i. 
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THERMOPHORETIC MOTION OF AN ENSEMBLE OF MODERATELY COARSE 

AEROSOL PARTICLES 

M. A. Gaidukov, V. A. Kostruba, and A. V. Terzyan UDC 533.72+541.182 

Knowledge of the laws governing the behavior of an ensemble of aerosol particles in a 
nonisothermal gas makes it possible to increase the efficiency of many industrial opera- 
tions (production of powders, removal of valuable or hazardous by-products from the atmos- 
phere, etc.). Such knowledge can also be useful in developing both natural and artificial 
methods of influencing cloud formation and movement. The latter is important, for example, 
in the use of aerosols in agriculture. 

The solution of thermophoresis problems entails calculation of the relative motion of 
a nonuniformly heated gas and aerosol particles suspended in it. The principal assumption 
underlying the hydrodynamic method of calculation proposed in [i] is that the particles are 
distant from one another and can each be regarded as an individual particle located in an 
infinite gas. Gaidukov and Melekhov [2] and Yalamov et al. [3] used this method to develop 
an approach which makes it possible to study the thermophoretic motion of an arbitrary col- 
lection of solid aerosol particles located close enough to one another to allow their hydro- 
dynamic interaction. By hydrodynamic interaction, it is meant that the interaction is due 
to the fact that a particle moving in the medium generates a velocity field that affects 
the motion of other particles. By virtue of the assumptions made in the mathematical formu- 
lation of the problem, the results presented in [2, 3] are valid only for an ensemble con- 

Erevan. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, 
pp. 109-115, May-June, 1991. Original article submitted November ii, 1987; revision sub- 

mitted June 23, 1989. 
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